
Technical Specification
OpenLogbook

OpenLogbook devteam
developer@openlogbook.org

15th May 2003

Abstract

This specification describes the technical solutions of OpenLogbook software.
It provides an overview of the system and describes the basic architecture, different
modules, save file structures and other technically oriented aspects of the program.
This specification guided the development during the initial project and now serves
as an architectural document.

1

Contents
1 Introduction 4

1.1 Purpose and Scope . 4
1.2 Product and Environment . 4
1.3 Definitions, Terms and Abbreviations 4
1.4 Overview of this Document . 4

2 Overview of the System 4
2.1 Application domain . 4
2.2 Hardware and Software Environment 4
2.3 Development Environment . 5
2.4 Limitations . 5
2.5 Agreements and Standards . 5

3 Description of the Architecture 5
3.1 Design Principles . 5
3.2 Save Project Structure . 6

3.2.1 Project XML File Structure 6
3.3 Time model . 6
3.4 Architecture, Modules and Communication 7

4 Module Descriptions 8
4.1 Core . 9

4.1.1 Description . 9
4.1.2 Interfaces . 9
4.1.3 Structure and Implementation 10
4.1.4 Exception handling . 10

4.2 Timeline . 11
4.2.1 Description . 11
4.2.2 Interfaces . 11
4.2.3 Structure and Implementation 12
4.2.4 Exception handling . 12

4.3 Data . 13
4.3.1 Description . 14
4.3.2 Interfaces . 15
4.3.3 Structure and Implementation 16
4.3.4 Exception handling . 16

4.4 GUI . 16
4.4.1 Description . 16
4.4.2 Interfaces . 17
4.4.3 Structure and Implementation 17
4.4.4 Exception handling . 17

4.5 Util . 18
4.5.1 Description . 18
4.5.2 Interfaces . 18
4.5.3 Structure and Implementation 18

5 General Error Handling 19
5.1 Logging . 19

2

6 Future Development Plans 19

7 Appendices 21
7.1 File formats supported by JMF . 21
7.2 XML representation of project data 23
7.3 XML representation of hotspot data 23
7.4 XML representation of logfile data 24

Version Date Author Description
1.0 2.12.2002 Tuomas First release
1.1 8.2.2003 Henri, Juho, Updated module and

Niklas, Tuomas architecture descriptions.
1.2 21.3.2003 Tuomas Updated to describe the

current situation
1.3 14.4.2003 Tuomas Updated for final review

Table 1: Changelog

3

1 Introduction

1.1 Purpose and Scope
This specification describes the structure of the OpenLogbook program. It describes
modules, their public interfaces and the overall communication between them. It also
defines the file formats to be used with saved projects.

This specification was meant for the internal use of the project group during the
project. It describes the essential features (e.g. interfaces) in such a detail that devel-
opers could use it for implementing modules. Technically oriented customer(s) could
also obtain information about the basic structure of the program from this specification.
After the ending of the project this document serves as an architectural document for
those who might need it.

This document describes the features that were implemented during the initial
project in 2002 - 2003. For example the networking modules are mentioned but neither
described nor even properly designed because they were not to be implemented during
the project. The structure is however designed so that those modules can be added
easily. In the future this document should be updated as necessary.

1.2 Product and Environment
The name of the product is OpenLogbook. For more detailed information about the
product see OpenLogbook Project Plan [2] and OpenLogbook Requirements Specifi-
cation [4].

OpenLogbook must runs on PC and at least on Windows and Linux platforms.
Other platforms may also work if they have proper components i.e. JVM and JMF
installed.

1.3 Definitions, Terms and Abbreviations
Definitions, Terms and Abbreviations are described in a separate document [5].

1.4 Overview of this Document
The rest of this document describes elaborately the technical solutions of OpenLog-
book. Section 2 presents an overview of the System. Section 3 describes the large scale
architecture and communication between the modules. Section 4 gives more detailed
descriptions of the modules and their public interfaces. Section 5 describes possible
error conditions and how they are handled inside the software and when and how to in-
form the user about them. Section 6 presents some future scenarios for OpenLogbook.

2 Overview of the System

2.1 Application domain
The application domain is described in OpenLogbook Project Plan [2].

2.2 Hardware and Software Environment
These have been fully explained in the User Requirements Document [4].

4

2.3 Development Environment
Development was done mainly in Linux environment. However, some testing was
carried out on Windows to ensure that OpenLogbook will run on Windows as well. If
a developer had wanted he might have used Windows as a development environment,
too.

The programming language used is Java 1.4. The development environment must
therefore include Java 1.4 compiler and bytecode interpreter i.e. Sun Java 1.4 SDK.
For the streaming media content JMF 2.1.1 is required.

Other tools needed in the development environment include CVS, Ant and JUnit.
CVS is a program for version controlling [6]. Ant is a tool for automating the compi-
lation of the source code [7]. JUnit is a library that helps in writing unit tests [8].

The usage of editors or other development tools was not restricted and the choice
was up to the developers. During the initial project the most popular tool was Emacs.

2.4 Limitations
The customer required that all the documentation had to be written in English during
the initial project. This applied to the code and comments as well so that the code
would be easily understood by an english speaker (i.e. names of variables and methods
were derived from English words). English was a natural choice because the future
development group was unknown.

No other limitations were set by the customer or by any other participant.

2.5 Agreements and Standards
The development was done under the directions of the OpenLogbook Quality Man-
ual [3].

3 Description of the Architecture

3.1 Design Principles
The leading design principles are modularity and clarity. The system is divided to
explicit modules, each of which handles a specific job. We are trying to keep modules
as simple as possible and to make them perform their tasks as well as possible. Using
modules also enables us to develop them individually.

The interfaces of the modules are designed to be clear and as stable as possible.
This enables us to make changes to modules without having any influence to other
modules. It is probably impossible to keep the interfaces totally unchanged all the
time, but we have tried to avoid changes by giving attention also to features that were
not implemented during the project.

Simple modules and clear interfaces should result in clarity of the whole design.
Clarity is especially important after the ending of the project to help the developers to
come. Clarity makes it possible for new developers to internalise the essentials of the
system fast and get them to work quickly.

Since we are using Java the object orientation comes automatically with it. We do
not actually consider it as a design principle but rather as a necessity which naturally
affects every aspect of the software - design, implementation and so on.

5

3.2 Save Project Structure
In OpenLogbook program a project means a structure that can contain audio, video
and different log files. A project can then be played or edited (add files, remove files,
change synchronization etc.) with OpenLogbook.

A saved project is a kind of a database. The files of the project are handled as
individual files and can be stored anywhere (e.g. hard disk, web server or a dedicated
OpenLogbook server) but the contents of each project is structured. The structure of
the project is described in a project.xml 1 file. Another important save file is the hotspot
file. Hotspots are saved individually even though they are an important part of every
project. This makes it possible to handle the hotspots more flexibly which is necessary
because hotspots do change a lot more often than other project data. Saving the whole
project would be waste of resources if for example only one hotspot has changed.

3.2.1 Project XML File Structure

The heart of a save file is the project.xml file that contains information about every
other piece of data contained in the project. The XML file tells where each data can
be found and how it should be handled. The information about hotspots is saved on
another file which has a file name related to a project.xml. More detailed description
can be found in the section 4.3.

In the beginning of the project.xml file there is an experiment ID which tells the
exact time when the OpenLogbook project was created. This ID is considered as a
unique identifier. After that there is a description of the project and the creator of the
project.

After these compulsory fields there can be a varying set of different kinds of other
data files. There may be video, audio and text log files. Format of the audio and video
files is not important as long as JMF knows how to handle them. The text logs’ format
can also vary and it is the OpenLogbook’s data module that has to know how to read
them. Each node tells the location and the time synchronization offset. Offset tells
when the presenting of the file should be started relative to the beginning of the project.
For text logs there is also a compulsory attribute that tells which wrapper should be
used for that data.

As mentionded before, in another file there are hotspots, which are time stamps of
interesting parts of the project. They have their own file and file format, which also uses
XML. Hotspot file also has ID and after this there are hotspots. Each hotspot contains
the relative time to the start of the project and a description of the phenomenon.

Appendix 7.2 shows the element declarations and an example project.xml file. Ap-
pendix 7.3 shows the element declarations and an example file for hotspots.

3.3 Time model
The time model of OpenLogbook is derived from the time model of JMF. JMF handles
the time in nanoseconds and so does OpenLogbook. Thus, internally every time must
be in nanoseconds. User interface has to do necessary time conversions to represent
the time in reasonable accuracy to users.

Inside a project the time starts from zero. Time zero is the time from which the
OpenLogbook will start to play projects. The time offsets of medias and different log
files are relative to the project’s time. For example if an offset of a video is 1 000 000

1In reality not necessarily this exact name, however project.xml is used for clarity in this specification.

6

000 (= 1 second), it means that the video will start to play one seconds after the playing
of the whole project started. Also negative offsets are allowed.

Inside the differet log files time also starts from zero and the times inside the file are
relative to the time of that particular file. The offset, which is defined in the project.xml,
is then used to synchronize the log file and the events to the project time.

All medias, except hotspots, can have the offset. Hotspots are concidered as an
inseparable part of each project. This means that the times of individual hotspots are
directly relative to project time.

3.4 Architecture, Modules and Communication

User

GUI
Core

Timeline

Data

Utils

Figure 1: Module overview and communications

Main modules of the OpenLogbook are Core, Timeline, Data, Util and GUI. The
architecture can be seen as a three layer structure shown in figure 1. This section
presents an overview of the modules and the communication between them. A more
detailed module descriptions are available in section 4.

The GUI module functions as an interface to the user. It handles the data represen-
tation and interprets the user’s commands to the program. It doesn’t do any actual data
processing - just the representation.

Timeline functions as the middle layer that processes the data and handles the syn-
chronization. It communicates constantly with the GUI which presents the data. It also
has a full access to the data on the underlying Data module.

7

Data module handles the communication with the hardware. It does the XML-
parsing and takes care of actual saving and loading actions. Data can be located in
multiple places. In figure 1 there are only 2 data storages but there may be more and
those storages can be different kinds of devices as described in section 3.2. Data can
even be read through network.

Core and Util are supporting modules to the others. Core contains classes and
methods that are essential for the program like logging and main Exception classes. It
also handles the starting of the program including parsing arguments, loading proper-
ties and opening the GUI. Util on the other hand contains a set of common classes and
methods that may be needed in different classes or do not fit very well to anywhere
else.

Communication between the modules is mainly handled by calling public interface
classes. Figure 1 shows which modules communicate with each other. Communication
between the GUI and the timeline is done with different kinds of events that tell the GUI
what to do. For example the GUI components that show the text data are registered to
a specific controller which then sends events to control the GUI component.

4 Module Descriptions

GUI

Util

XMLAssistant

«interface»
LBViewManagerLBView

Data

«interface»
LBProject

TimeLine

«interface»
LBTimeline

Core

«static»
Main

 1

 *

Catalog

 1

 *

 1

Figure 2: Modules and their relationships

8

4.1 Core

Core

Main
+main(args:String[])
+Main()
#Main(configUrl:URL)
+getCatalog(): Catalog
+getConfig(): Config
+getGUI(): LBViewManager
+getLogger(): Logger
+createProject(): LBTimeline
+loadProject(fileUrl:URL): LBTimeline
+selectProject(name:String)

Config
#Config()
+getParameter(key:String): String
+setParameter(key:String,value:String)
#load(fileURL:URL)
#save(fileUrl:URL)

Logger
-logger4j: org.apache.log4j.Logger
#Logger()
#Logger(forceConsole:boolean)
+debugStackTrace()
+debug(message:String)
+info(message:String)
+info(message:String,show:boolean)
+warning(message:String)
+warning(message:String,show:boolean)
+error(message:String)
+error(message:String,boolean:show)
+fatal(message:String)
+fatal(message:String,show:boolean)

Catalog
#Catalog()
+getViews(): LBView[]
+getTimelines(): LBTimeline[]
#addTimeline(timeline:LBTimeline)
#removeTimeline(timeline:LBTimeline)
+getActiveTimeline(): LBTimeline
#setActiveTimeline(timeline:LBTimeline)
+addView(view:LBView)
+removeView(view:LBView)
+getActiveView(): LBView
+setActiveView(view:LBView)

owns

 1
owns

 1

owns

 1

Figure 3: Core module class diagram

4.1.1 Description

Core module is the center of the whole program. Everything begins from here when the
user calls the main function of the program. Command line arguments are parsed and
basic services like logging and configuration management are started. These services
are then provided to the other modules through public interfaces. Core module also
calls initialization of other modules, e.g. GUI, and stores instances of them. Core’s
class diagram is shown in figure 3.

4.1.2 Interfaces

Core stands between the other modules. Every module can ask for an instance of some
other module through Main class’s corresponding methods. There are methods for
accessing GUI’s ViewManager and other public system wide instances like Logger,
Config and Catalog.

Creation or loading of projects goes through the Core module. The request is for-
warded straight to the Timeline module which returns an instance of the Timeline after
all related files are loaded and initialized from the disk. This class is returned to the user
interface which shows the content of the project for the user. After initialization, user
interface and Timeline-module can communicate directly but this conversation always
starts within the control of the Core module.

Main class contains public get methods for program wide instances. Project han-
dling methods are also present. The class and it’s methods are static so that other

9

modules can call them direcly. It contains the main-function of the program.
Logger class has public methods for adding different kinds of log and error mes-

sages. These methods must be called from other modules when there is a need for
logging. No System.out.println() -methods are allowed for logging purposes. It is also
possible to show all log messages to the user inside pop-up windows.

Config class has an interface for accessing configurations. Values can be retrieved
or inserted using key names found from openlogbook.properties-file. Null value is
returned if no matching key name was found. Configuration information is read from
the disk when the program starts and written back before quitting the software.

Catalog class keeps track of all open components. It has an interface for accessing
all Timelines and their graphics components. Currently active items can be requested
too. Adding of Timelines is handled only by the Main class and the Views are handled
by the ViewManager, so they are not intended for public usage.

Command line parameters
� -config location of the configuration file in URL syntax.

4.1.3 Structure and Implementation

The Main class is static so that it is accessible from anywhere in the program.
Logging is implemented using the assistance of the Log4j external package. Our

implementation of Logger class is only a wrapper to that package, so the logger imple-
mentation can be easily replaced at a later time if needed.

Configurations are saved using a syntax compatible with Java’s Properties class.

4.1.4 Exception handling

The module has to be resistant to incorrect arguments and configurations provided
by the user. There have to be some functional default values in a case of missing
configurations.

The module has to handle all possible errors inside the module so that the main
program never throws any exceptions to the underlying Java virtual machine.

10

4.2 Timeline

TimeLine

«interface»
LBTimeline

+initialize()
+initialize(fileUrl:URL)
+getProject(): LBProject
+getCurrentTime(): long
+setCurrentTime(relativeTime:long)
+getSpeed(): float
+setSpeed(factor:float)
+play()
+pause()
+stop()
+record()
+projectChanged()

Timeline
-project: LBProject
-mainController: JMFCoreController

javax.media

«interface»
Clock

«interface»
Controller

ControllerEvent

BasicClock

TextLogController

«abstract»
BasicTextController

TextLogEvent
#textObject: LBTextObject
+getTextObject(): LBTextObject

generates

 1

 1

controls > *

 1

HotspotController

EventPostingBase
+addControllerListener(observer:ControllerListener)
+removeControllerListener(observer:ControllerListener)
+postEvent(event:ControllerEvent)

java.lang

«interface»
Runnable

«interface»
Duration

JMFCoreController

«interface»
ControllerListener

MediaPlayer

controls >

*

 1

«interface»
LBController

+updateController()

Figure 4: Timeline module class diagram

4.2.1 Description

Timeline module controls the time and media content of the OpenLogbook software.
It stands between the data and the presentation layers. It depends heavily on JMF for
synchronizing media files. It extends the functionality of JMF to represent the textlog
files and to control all media representations. The content of the timeline is played to
the user using the presentation layer, GUI module. This playing is done by controlling
of medias and sending action messages to the GUI.

4.2.2 Interfaces

LBTimeline is a public interface for controlling the entire project. There are methods
for creating a new project either by loading it from a project file or by starting from
scratch. In case of an existing project, all data are loaded using assistance of the Data
module and then the created instance of the Timeline is returned.

After creation of the timeline and initialization of the GUI views, the project is
ready to be played. There are several control methods for different types of operations

11

like play, record, pause and stop. These control methods don’t return anything, they
just fire the event.

The project instance which contains all the data of the project can be returned using
getProject() method. Timeline itself doesn’t handle the data, it uses the Data module
for that. See section 4.3 for more details about data storage.

LBController is a public interface that extends JMS’s Controller interface. A
separate interface is needed for the data module so that the controller can be updated
when the data changes.

4.2.3 Structure and Implementation

Implementation of the timeline is based heavily on the JMF. Time controlling is done
by JMF which takes care of all media files, too. The timeline consist of two parts:
the components controlling the whole project and the components that handle the text
playing. There are also several classes imoprtant to both of these parts, for example the
BasicClock that takes care the low level time handling.

Backbone implementation of timeline consists of BasicClock and BasicTextCon-
troller classes. They implement the basic functionality of Clock and Controller inter-
faces. The BasicTextController is extended by other controllers to get proper func-
tionality for different types of text files. Also other kinds of medias can extend the
BasicTextController if the data can be represtented as text and if there are necessary
gui components availabe to present the data. For example a contoller for pictures could
be created easily.

JMFCoreController is the controlling component for all other contorllers and play-
ers. It does not have any media of its own to play, it just controls all the others. The
synchronization of different media happens automatically when the other players are
set as controlled by the JMFCoreController. The functionality of JMFCoreController
is hidden behind the public interface of the timeline. LBTimeline interface can handle
all the necessary actions pointed to all of the medias.

The synchronization of text logs is done with different controller classes inherited
from the BasicTextController. These controllers implement the Controller interface
of JMF and act just as any other controller, even though the data is not traditional
streaming data like audio or video. The contollers keeps track of text logs’ time and
fires an event when it’s time to change the data that is shown to user. The data is sent
as a TextLogEvent to the user interface which shows it on the screen.

Each text log needs an individual controller instance. These instances are connected
to each other and when the data changes the conrtoller is updated automatically.

4.2.4 Exception handling

The module handles unexpected exceptions caused by time handling and/or user’s ac-
tions itself. In case of severe errors which abort the execution, the cause of the error is
shown to the user. For logging and user messages the module uses the Logger from the
Core module.

12

4.3 Data

data

<<interface>>
LBWrapperObject

+save(fileUrl:URL)
+addItem(item:LBTextItem)
+removeItem(item:LBTextItem): void
+getDataTitles(): String[]
+setDataTitles(titles:String[])
+getItems(): LBTextItem[]

<<interface>>
LBProject

+load(fileUrl:URL)
+save(fileUrl:URL)
+getId(): Long
+isDirty(): boolean
+getAuthor(): String
+setAuthor(author:String)
+getFileUrl(): URL
+getDescription(): String
+setDescription(description:String)
+getTimesync(): long
+setTimesync(long:timesync)
+addMedia(jmf:LBMediaObject)
+addWrapper(wrapper:LBWrapperObject)
+setHotspots(hotspots:HotspotWrapper)
+getHotspots(): HotspotWrapper
+getMedias(): LBMediaObject[]
+getWrappers(): LBWrapperObject[]
+getController(lbo:LBObject): Controller
+getObjects(): LBObject[]
+getPlayableObjects(): LBObject[]
+getPlayer(mo:LBMediaObject): Player
+removeMedia(jmf:LBMediaObject)
+removeObject(object:LBObject)
+removeWrapper(wrapper:LBWrapperObject)

<<interface>>
LBMediaObject

<<interface>>
LBTextItem

+getRelativeTime(): int
+setRelativeTime(time:int)
+getText(): String
+setText(text:String)

Project
-hotspotWrapper: HotspotWrapper
-medias: HashSet
-mediaControllers: Hashtable
-wrappers: HashSet
-author: String
-description: String
-fileUrl: URL
-id: Long
-isDirty: boolean
-timesync: long
+Project()

TextItem
-time: int
-text: String
+TextObject()

MediaObject
-id: Integer
-offset: int
-fileUrl: URL
-description: String
+MediaObject()

uses

 *
uses

 *

uses

 *

<<interface>>
LBObject

+load(fileUrl:URL): void
+getId(): Integer
+getDescription(): String
+setDescription(description:String)
+getFileUrl(): URL
+setFileUrl(fileUrl:URL)
+getTimeOffset(): int
+setTimeOffset(offset:int)

Search
-wrapper: LBWrapperObject
+Search(lbw:LBWrapperObject)
+makeQuery(query:String): LBWrapperObject

uses

uses

Figure 5: Data module class diagram

13

data.wrappers

GeneralWrapper
#id: Integer
#fileUrl: URL
#items: Vector
#dataTitles: String[]
#description: String
#offset: long
#controller: LBController
+GeneralWrapper()
+size(): int
+getItemAt(index:int): LBTextItem
+removeItemAt(index:int): void
#htmlEncode(s:String): String
#htmlDecode(s:String): String
+equals(wo:LBWrapperObject): boolean
+doLoad(fileUrl:URL): boolean

LogFile

+LogFile()
#makeDataNodes(xml:XMLAssistant): void
#makeRootNodes(): Vector
#getDescriptionFromFile(xml:XMLAssistant): void
#getData(xml:XMLAssistant): void
+doLoad(fileUrl:URL): boolean

HotspotWrapper

+HotspotWrapper()
#makeDataNodes(xml:XMLAssistant): void
#getData(xml:XMLAssistant): void
+sortHotspots(): void
+doLoad(fileUrl:URL): boolean

GunData
-id: Integer
-fileUrl: URL
-items: LinkedList
-dataTitles: String[]
-description: String
#offset: long
+GunData()

Figure 6: Wrappers package class diagram

4.3.1 Description

Data module handles all storage needs for the OpenLogbook. There is a Project class
which can be saved into an XML-file. It contains information about all other data
files in the project. These data can be either media files or text/xml based log files.
OpenLogbook supports various kinds of text logs by having one interface (LBWrap-
perObject) to all of them. There can be many different implementations but they are
all the same from the software point of view. Thus only one implementation of Search-
class is needed for making search-queries to all wrappers. The different wrapper-
implementations are located in data’s sub-package called wrappers (fi.hip.openlogbook.data.wrappers).

Writing third party wrappers is simple. The developer has to implement the LB-
WrapperObject interface and add the wrapper to the load dialog. There is an abstract
class called GeneralWrapper that can be extended if a straight implementation of the
interface is not escpecially necessary. When extending the GeneralWrapper the devel-
oper has to take care only about loading, saving and comparing this type of wrappers
with each other. Thus this is recomended instead of implementing the wrapper inter-
face directly.

Data module also creates the controllers that the timeline module needs and keeps
them uptodate when data changes.

14

4.3.2 Interfaces

LBProject contains all information related to the project. A project can be saved and
loaded from disk, where it’s in an XML file (see 7.2 for the file structure). It contains
methods for getting a list of included media files and log files, adding new items to the
project and setting and getting the hotspots. Also methods for getting the necessary
JMF components for timeline are included.

When a project is loaded, an instance of LBProject is created using the information
in the XML file. Then included files are loaded using the assistance of LBWrapper-
Object and LBMediaObject interfaces. Hotspots are loaded using the HotspotWrapper-
class. They are saved in a xml-file called <projectfilename>.<hotspotpostfix>.xml (e.g.
project.hotspots.xml). The postfix can be changed from the openlogbook.properties -
file. The structure of the xml-file can be seen at appendices (7.3).

LBObject is an interface that is extended by all the other OpenLogbook’s Object-
interfaces. It includes methods for setting and getting the unique Id for an object, it’s
description, file url and time offset.

LBWrapperObject is a wrapper interface to different text formats. Wrappers can
contain unlimited amount of timestamped messages, stored using the LBTextItem in-
terface. There are methods for returning, setting and adding items to the wrapper.

When a new log file is to be loaded, the Project class creates a new instance of the
wrapper using the class name mentioned in the project file. Then load(fileUrl) method
is executed with the URL to the logfile. After this the wrapper is on its own and must
implement all necessary routines to read the content of the file and fill up the data fields.

LBWrapperObject contains two-dimensional tabular data. There is a set of data
titles (columns) and an unlimited amount of values for them (rows). Every row has
a timestamp. Using this kind of syntax it is possible to have a general log viewer for
showing any kind of log files. There is no need to have specialized viewers for every
log type.

getDataTitles() is an interface for retrieving the array of titles and getItems() is used
for getting the array actual data items (LBTextItem).

Search is a class that is used for searching information from a wrapper. It includes
one public method makeQuery(String query) for making a search to a wrapper given
in a constructor. The method returns a new wrapper with a same type but only with
the data that passed the query. The query can include both keyword- and comparing-
searchs (greater than, lower than, etc..) with AND/OR/NOT operators.

Currently, OpenLogbook supports 3 different types of wrappers: HotspotWrapper,
LogFile and GunData. HotspotWrapper is used for saving the project’s hotspots, Log-
File is a wrapper for OpenLogbook logfiles (see 7.4 for the structure of the file) and
GunData is used for reading Gun microscope data.

LBTextItem is a container for time and data. Time is a relative time in nanoseconds
and the data is an array of plain Strings, one string for each column. The interface
contains getRelativeTime() and getTexts() methods for accessing these values, as well
as corresponding setter methods.

There is a same kind of an interface for media files, a LBMediaObject. Instead of
a text message it contains a URL to the location of the media file. The relative time is
replaced with an offset to when the media should start playing on timeline.

15

4.3.3 Structure and Implementation

Data package is only a bunch of interfaces and as many implementations for them as
needed. Project is not dependent on any other wrapper than HotspotWrapper, which
ensures the scalability of the data module in the future.

Wrapper-implementations are located in their own package, data.wrappers. This is
the place where the third party wrapper should be located, too.

4.3.4 Exception handling

There can be many kinds of errors during reading, parsing and transforming different
data types. It is important that these errors don’t prohibit the usage of the entire soft-
ware. They must give clean error messages to the caller explaining what went wrong
and why. The review of the entire project must not be aborted on errors, only problem-
atic data items are left out.

4.4 GUI

gui

java.swing

JFrame JDesktopPane JInternalFrame <<interface>>
InternalFrameListener

<<interface>>
LBViewManager

-mainWindow: MainWindow
+createMainWindow()
+getMainVindow(): JFrame
+updateMenus(projectsChanged:boolean,componentsChanged:boolean)
+getTitle(): String
+setTitle(title:String)
+popupMessage(message:String,messageType:int)
+selectView(view:LBView)
+getUndoListener(): UndoableEditListener

LBView

+LBView()
+initialize(timeline:LBTimeline)
+addComponent(component:LBComponent)
+addComponent(object:LBObject)
+removeComponent(id:Integer)
+removeComponent(component:LBComponent)
+updateComponents()
+exists(component:LBComponent): boolean
+exists(object:LBObject): boolean
+existsController(controllerClass:Class): boolean
+getAllComponents(): LBComponent[]
+getLBComponentHash()(): Hashtable

ViewManager
-mainWindow: MainWindow
-undoAssistnt: UndoAssistant
+ViewManager()

MainWindow
#MainWindow()
#componentsChanged()
#projectsChanged()

TimelineView

+TimelineView()

owns

 1

components

<<abstract>>
LBComponent

MediaPlayer

Syncronizer

TextLogger

Hotspots

MainController

 *

ScrollingText

NewFileDialog

NewProjectDialog

ProjectInfo

SearchGUI

TextPlayer

OffsetEditor OffsetRenderer

<<interface>>
BasePlayer

models

util

WholeNumberField

UndoAssistant

HotspotTableModel

WrapperTableModel

LoggerTableModel

MediaTableModel

SynchronizeTableModel

TextItemTableModel

SearchTableModel

ButtonCellRenderer

ButtonCellEditor

java.util

<<interface>>
EventListener EventObject FilesChangedEventHotspotsChangedEvent

FilesChangedEventListener HotspotsChangedEventListener

Throwed by
Hotspots, HotspotTableModel
listened by
MainController

Throwed by ProjectInfo,
listened by ProjectInfo,
SearchGUI, Synchronizer

ScrollableTextAreaEditor

ScrollableTextAreaRenderer

FloatKeyValidity

Figure 7: GUI module class diagram

4.4.1 Description

Graphical user interface module is the presentation layer of the software. There should
not be any external logic nor data handling inside this module. Timeline module con-
trols the time flow and informs GUI with events when something has to be done.

GUI is constructed from one ViewManager, several views and multiple components
inside every view. Only one view is visible at the same time. Each instance of Project
class has its own view, currently implemented by TimelineView class. Core module’s
Catalog class takes care of that the right Project’s TimelineView is visible at the right
time.

16

4.4.2 Interfaces

The main interface to the GUI is LBViewManager. It handles the main window of the
software. There are public methods for creating and getting instances of MainWindow,
updating menus inside MainWindows, selecting views and getting the undo listener
common for all components. All information messages to the user are sent through
the popupMessage(String message, int messageType) method. The title of the main
window can also be set using setTitle(String title) method.

MainWindow is the main frame of the GUI. It interacts with the user through
common menus and toolbars, and forwards users actions to the right modules. The
main window itself is accessed only by the ViewManager.

LBView is an abstract class that extends JDeskTopPane. LBView offers methods
for adding and removing components shown in the view. LBView also takes care
of the singleton controllers(Hotspots, MainController, Synchronizer and ProjectInfo).
LBView is extended by TimelineView which knows how to create visual components
out of LBObjects.

LBComponent (gui.components.LBComponent)presents a component inside view.
There can be many different types of derived components for different data presenta-
tions and visualizations. All subcomponents implement LBComponent and therefore
extend JInternalFrame and implement InternalFrameListener. Interfaces for compo-
nents are simple, only one method for getting the ID of the component.

If component is used to present JMF related data, it must implement javax.media.ControllerListener
interface. After that JMF communicates with the component sending events to con-
trollerUpdate(ControllerEvent) method.

4.4.3 Structure and Implementation

Creating new components must be easy, without need to recompile the whole program.
This means having either a list of classes in the config file or autonomous listing based
on classes found in the classpath.

All views are stored inside Core package’s Catalog class. Views are always bound
only to one Timeline object. This is done by the Catalog class. Every view has to store
in itself all the components it owns. Components are thus bound only to one view.

4.4.4 Exception handling

Errors in the user interface may not affect other parts of the software. If very severe
faults occur and the whole UI crashes, the cause must be printed on the console and to
the log file.

17

4.5 Util

Util

XMLAssistant
+XMLAssistant()
+load(fileUrl:URL)
+save(fileUrl:URL)
+getAttributes(fullTagname:String): Vector
+getNodeData(fullTagname:String): Vector
+deleteNode(fullTagname:String,data:Vector)
+deleteNode(fullTagname:String,data:Vector,attributes:Vector)
+insertNode(fullTagname:String,data:Vector)
+insertNode(fullTagname:String,data:Vector,attributes:Vector)

TimeConversion
+millisecondsToNanoseconds(millis:long): long
+nanosecondsToMilliseconds(nanos:long): long

Assistant
-randomGenerator: Random
+Assistant()
+nextInteger(): Integer
+nextLong(): Long
+getNow(): long
+getFileSize(fileUrl:URL): String
+getArray(string:String): String[]
+makeStringPair(string1:String,string2:String): String[]
+isSameStringArray(array1:String[],array2:String[]): boolean

Figure 8: Util module class diagram

4.5.1 Description

Util module has common helper classes used by other modules.

4.5.2 Interfaces

XMLAssistant provides an easy way for reading and writing XML files. After loading
an XML-file to the class it can be inspected using methods for getting node value and
it’s attributes in a Vector. The class also provides methods for inserting and deleting
nodes and finally saving the XML-tree back to a file.

TimeConversion provides simple methods for making time conversions.
Assistant includes all kind of general methods. It provides methods for retrieving

random numbers as integers or longs and getting the size of a file behing an URL-
address. It also includes some methods for making and comparing of String-arrays.

4.5.3 Structure and Implementation

Util module is only a bunch of invidual classes. They are not dependent on each others.

18

5 General Error Handling
All errors and exceptions must be caught inside the module where the fault happened.
There is a much better possibility of identifying and solving the problem if it is caught
near the problem. This also keeps modules as autonomous as possible without throwing
exceptions to each other and confusing the design and implementation.

If the exception affects or prevents actions that user wanted to accomplish, a pop-up
window may be used to inform the user. Core’s Logger class has methods for showing
log messages on the screen.

5.1 Logging
For logging the Logger class from Core module is used. The logger has five levels of
messages and each of them should be used as follows:

� fatal level should be used when the program cannot run anymore or is likely to
crash.

� error level should be used when important actions cannot be performed.

� warning level should be used when something happens that is not expected
and/or may (but not yet has) cause an error.

� info level should be used for informational messages.

� debug level should be used for debug messages.

All these messages except debug level messages can be showed to the user with a
pop-up window.

Each of these log messages are generated using a corresponding method in Logger.
See Javadoc documentation generated from source code files for detailed information
about instantiating and using the Logger.

In general there should rather be too much logging than too little (of course on an
apporopriate level).

6 Future Development Plans
The plans of the future are represented in the Status Report of the last project phase [10].

19

References
[1] OpenLogbook project webpages for the course T-76.115

http://motha.tky.hut.fi/openlogbook/
Cited: 13.4.2003.

[2] OpenLogbook Project Plan
http://motha.tky.hut.fi/openlogbook/delivery/project_plan.pdf
Cited: 13.4.2003.

[3] OpenLogbook Quality Manual
http://motha.tky.hut.fi/openlogbook/delivery/quality_manual.pdf
Cited: 13.4.2003.

[4] OpenLogbook Requirements Specification
http://motha.tky.hut.fi/openlogbook/delivery/requirements.pdf
Cited: 13.4.2003.

[5] OpenLogbook Terminology document
http://motha.tky.hut.fi/openlogbook/delivery/terminology_doc.pdf
Cited: 13.4.2003.

[6] OpenLogbook method description: Concurrent Versions System and Software
Configuration Management
http://motha.tky.hut.fi/openlogbook/methods/cvs_and_scm/
Cited: 13.4.2003.

[7] Apache Ant homepage
http://jakarta.apache.org/ant/
Cited: 13.4.2003.

[8] OpenLogbook method description: Automated unit testing with JUnit
http://motha.tky.hut.fi/openlogbook/methods/unit_testing/
Cited: 13.4.2003.

[9] JMF: Supported Media Formats and Capture Devices
http://java.sun.com/products/java-media/jmf/2.1.1/formats.html
Cited: 13.4.2003.

[10] OpenLogbook - Status report
http://motha.tky.hut.fi/openlogbook/delivery/status_report.pdf
Cited: 13.4.2003.

20

7 Appendices

7.1 File formats supported by JMF
According to [9] JMF supports the following file formats:

� D indicates the format can be decoded and presented.

� E indicates the media stream can be encoded in the format.

� read indicates the media type can be used as input (read from a file)

� write indicates the media type can be generated as output (written to a file)

Media Type JMF 2.1.1 Cross JMF 2.1.1 Solaris JMF 2.1.1 Windows
Platform Version Performance Pack Performance Pack

AIFF (.aiff) read/write read/write read/write
8-bit mono/stereo linear D,E D,E D,E
16-bit mono/stereo linear D,E D,E D,E
G.711 (U-law) D,E D,E D,E
A-law D D D
IMA4 ADPCM D,E D,E D,E
AVI (.avi) read/write read/write read/write
Audio: 8-bit mono/stereo linear D,E D,E D,E
Audio: 16-bit mono/stereo linear D,E D,E D,E
Audio: DVI ADPCM compressed D,E D,E D,E
Audio: G.711 (U-law) D,E D,E D,E
Audio: A-law D D D
Audio: GSM mono D,E D,E D,E
Audio: ACM - - D,E
Video: Cinepak D D,E D
Video: JPEG (411, 422, 111) D D,E D,E
Video: RGB D,E D,E D,E
Video: YUV D,E D,E D,E
Video: VCM - - D,E
Flash (.swf, .spl) read only read only read only
Macromedia Flash 2 D D D
GSM (.gsm) read/write read/write read/write
GSM mono audio D,E D,E D,E
HotMedia (.mvr) read only read only read only
IBM HotMedia D D D
MIDI (.mid) read only read only read only
Type 1 and 2 MIDI - D D

21

Media Type JMF 2.1.1 Cross JMF 2.1.1 Solaris JMF 2.1.1 Windows
Platform Version Performance Pack Performance Pack

MPEG-1 Video (.mpg) - read only read only
Multiplexed System stream - D D
Video-only stream - D D
MPEG Layer II Audio (.mp2) read only read/write read/write
MPEG layer 1, 2 audio D D,E D,E
MPEG Layer III Audio (.mp3) - - read only
MPEG layer 1, 2 or 3 audio - - D (through DirectX)
QuickTime (.mov) read/write read/write read/write
Audio: 8 bits mono/stereo linear D,E D,E D,E
Audio: 16 bits mono/stereo linear D,E D,E D,E
Audio: G.711 (U-law) D,E D,E D,E
Audio: A-law D D D
Audio: GSM mono D,E D,E D,E
Audio: IMA4 ADPCM D,E D,E D,E
Video: Cinepak D D,E D
Video: H.261 - D D
Video: H.263 D D,E D,E
Video: JPEG (411, 422, 111) D D,E D,E
Video: RGB D,E D,E D,E
Sun Audio (.au) read/write read/write read/write
8 bits mono/stereo linear D,E D,E D,E
16 bits mono/stereo linear D,E D,E D,E
G.711 (U-law) D,E D,E D,E
A-law D D D
Wave (.wav) read/write read/write read/write
8-bit mono/stereo linear D,E D,E D,E
16-bit mono/stereo linear D,E D,E D,E
G.711 (U-law) D,E D,E D,E
A-law D D D
GSM mono D,E D,E D,E
DVI ADPCM D,E D,E D,E
MS ADPCM D D D
ACM - - D,E

Table 2: File formats supported by JMF

22

7.2 XML representation of project data

<?xml version=’’1.0’’ encoding=’’ISO-8859-1’’ ?>
<!DOCTYPE project [
<!ELEMENT project (description?,creator?,media*,wrapper*)>
<!ELEMENT timesync (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT creator (#PCDATA)>
<!ELEMENT media (file,timesync?,description?)>
<!ELEMENT wrapper (file,timesync?,description?)>
<!ELEMENT file (#PCDATA)>
<!ELEMENT timesync (#PCDATA)>
<!ATTLIST project id CDATA #REQUIRED>
<!ATTLIST wrapper class CDATA #REQUIRED>

]>

<project id=’’1044605170157’’>
<description>This is an example project</description>
<creator>Someone@somewhere</creator>
<media>
<file>file:video.avi</file>
<timesync>1200</timesync>
<description>Laboratory view</description>

</media>
<media>
<file>file:sem.avi</file>
<timesync>-500</timesync>

</media>
<log wrapper=’fi.hip.openlogbook.data.wrappers.GunData’>
<file>file:/tmp/gundata.txt</file>
<timesync>-500</timesync>
<description>Comments written during the experiment</description>

</log>
<log wrapper=’fi.hip.openlogbook.data.wrappers.LogFile’>
<file>http://www.hip.fi/experiment/test.txt</file>

</log>
</project>

7.3 XML representation of hotspot data

<?xml version=’’1.0’’ encoding=’’ISO-8859-1’’ ?>
<!DOCTYPE hotspots [
<!ELEMENT hotspots (hotspot*)>
<!ELEMENT hotspot (#PCDATA)>
<!ATTLIST hotspots id CDATA #REQUIRED>
<!ATTLIST hotspot timesync CDATA #REQUIRED>

]>

23

<hotspots id=’’176941689’’>
<hotspot timesync=’’3212’’>the first interesting thing</hotspot>
<hotspot timesync=’’55344’’>look at the temperature!</hotspot>

</hotspots>

7.4 XML representation of logfile data

<?xml version=’’1.0’’ encoding=’’ISO-8859-1’’ ?>
<!DOCTYPE logfile [
<!ELEMENT logfile (description?,data?)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT data (logline*)>
<!ELEMENT logline (#PCDATA)>
<!ATTLIST logfile id CDATA #REQUIRED>
<!ATTLIST logline timesync CDATA #REQUIRED>

]>

<logfile id=’’107959875’’>
<description>OpenLogbook logfile for experiment #112</description>
<data>
<logline timesync=’’1333’’>First thing</logline>
<logline timesync=’’44423’’>The other</logline>

</data>
</logfile>

24

